
Massive parallelization of the compact genetic algorithm

Fernando G. Lobo, Cláudio F. Lima, Hugo Ḿartires
DEEI-FCT, Universidade do Algarve

Campus de Gambelas, 8000-062 Faro, Portugal
E-mail: {flobo,clima}@ualg.pt, hmartires@myrealbox.com

Abstract
This paper presents an architecture which is suitable

for a massive parallelization of the compact genetic al-
gorithm. The resulting scheme has three major advan-
tages. First, it has low synchronization costs. Second, it
is fault tolerant, and third, it is scalable.

The paper argues that the benefits that can be ob-
tained with the proposed approach is potentially higher
than those obtained with traditional parallel genetic al-
gorithms.

1 Introduction
One of the efficiency enhancement techniques that has

been investigated in the field of evolutionary computa-
tion, both in theory and in practice, is the topic of par-
allelization [1]. With a traditional parallel genetic algo-
rithm (GA) implementation, population members need
to be sent over a computer network, and that imposes a
limit on how fast they can be. This paper addresses the
parallelization of the compact genetic algorithm (cGA)
[2], and take advantage of its compact representation of
the population do develop a scheme which significantly
reduces the communication overhead.

The paper is organized as follows. The next section
presents background material on parallel GAs and sec-
tion 3 reviews the cGA. Section 4 shows the motivation
for parallelizing the cGA and presents an architecture
that allows its massive parallelization. In section 5 com-
puter experiments are conducted and its results are dis-
cussed. Finally, a number of extensions are outlined, and
we finish with a brief summary and the main conclusions
of this work.

2 Parallel GAs
An important efficiency question that people are faced

with in problem solving is the following: Given a fixed
computational time, what is the best way to allocate
computer resources in order to have as good a solution
as possible. Under such a challenge, the idea of paral-
lelization stands out naturally as a way of improving the
efficiency of the problem solving task. By using mul-
tiple computers in parallel, there is an opportunity for

delivering better solutions in a shorter period of time.
Several researchers have investigated the topic of par-

allel GAs and the major design issues are in choices such
as using one or more populations, and in the case of us-
ing multiple populations, decide when, with whom, and
how often do individuals communicate with other indi-
viduals of other populations.

Although implementing parallel genetic algorithms is
relatively simple, the answers to the questions raised
above are not straightforward and traditionally have only
been answered by means of empirical experimentation.
One exception to that has been the work of Cantú-Paz
[1] who has built theoretical models that lead to rational
decisions for setting the different parameters involved in
parallelizing GAs. There are two major ways of imple-
menting parallel GAs: (1) using a single population, and
(2) using multiple populations.

In single population parallel GAs, also called Master-
Slave parallel GAs, one computer (the master) executes
the GA operations and distributes individuals to be eval-
uated by other computers (the slaves). After evaluating
the individuals, the slaves return the results back to the
master. There can be significant benefits with such a
scheme because the slaves can work in parallel, inde-
pendently of one another. On the other hand, there is an
extra overhead in communication costs that must be paid
in order to communicate individuals and fitness values
back and forth.

In multiple population parallel GAs, what would be a
whole population in a regular non-parallel GA, becomes
several smaller populations (usually called demes), each
of which is located in a different computer. Each com-
puter executes a regular GA and occasionally, individu-
als may be exchanged with individuals from other pop-
ulations. Multiple population parallel GAs are much
harder to design because there are more degrees of free-
dom to explore. Specifically, four main things need to be
chosen: (1) the size of each population, (2) the topology
of the connection between the populations, (3) the num-
ber of individuals that are exchanged, and (4) how often
do the individuals exchange.

Cant́u-Paz investigated both approaches and con-



cluded that for the case of the Master-Slave architecture,
the benefits of parallelization occur mainly on problems
with long function evaluation times because it needs con-
stant communication. Multiple population parallel GAs
have less communication costs but do not avoid com-
pletely the communication scalability problem. In other
words, in either approach, communication costs impose
a limit on how fast parallel GAs can be.

The next section gives an overview of the cGA, and
after that, its parallelization is discussed.

3 The Compact Genetic Algorithm

Harik et al. [2] noticed that it was possible to mimic
the behavior of a simple GA without storing the popula-
tion explicitly. Such observation came from the fact that
during the course of a regular GA run, alleles compete
with each other at every gene position. At the beginning,
scanning the population column-wise, we should expect
to observe that roughly 50% of the alleles have value 0
and 50% of the alleles have value 1. As the search pro-
gresses, for each column, either the zeros take over the
ones, or vice-versa. Harik et al. built an algorithm that
explicitly simulates the random walk that takes place on
the allele frequency makeup for every gene position. The
resulting algorithm, the cGA, was shown to be opera-
tionally equivalent to a simple GA that does not assume
any linkage between genes.

Under the cGA, the population is represented by a
probability vector. The elements of the vector are the rel-
ative frequency counts of the number of 1’s for the differ-
ent gene positions. The cGA manipulates the population
in an indirect way through an update step in each allele
frequency of the probability vector. Notice that each al-
lele frequency value is a member of a finite set ofN + 1
possible values, and can be stored withlog2(N + 1)
bits. (N denotes the population size of a regular GA).
Instead, a regular GA would requireN bits to represent
each bit position. Further details about the algorithm can
be found in the original source [2].

4 Massive parallelization of the compact GA

The main motivation for parallelizing the cGA comes
from the observation that the probability vector is a com-
pact representation of the population, and it is possible
to communicate the vector rather than individuals them-
selves. Communication costs can be reduced this way
because the probability vector needs significant less stor-
age than the whole population. This observation has first
been made by Harik [3] when the cGA was developed.

Since communication costs can be drastically re-
duced, it makes sense to clone the probability vector to
several computers, and each computer can work inde-
pendently on solving a problem by running a separate

cGA. Then, the different probability vectors would have
to be consolidated (or mixed) once in a while.

We have developed an asynchronous parallelization
scheme which consists of a manager processor, and an
arbitrary number of worker processors (see Figure 1).
Initially, the manager starts with a probability vector
with 0.5 in all positions, just like in a regular cGA. After
that, it sends the vector to all workers who are willing to
contribute with CPU time.

Each worker processor runs a cGA on its own based
on a local copy of the probability vector. Workers do
their job independently and only interrupt the manager
once in a while, after a predefined number ofm fitness
function evaluations have elapsed.

During the interruption period, a worker sends the ac-
cumulated results of the lastm function evaluations as a
vector of probability fluxes with respect to the original
probability vector. Subsequently, the manager adds the
probability fluxes (values are truncated so that they never
exceed 1.0 and never go below 0.0) to its own probabil-
ity vector, and resends the resulting vector back to the
worker. Notice that the manager’s probability vector not
only incorporates the results of them function evalua-
tions performed by that particular worker, but it also in-
corporates the results of the evaluations conducted by
the other workers. That is, while a particular worker
is working, other workers might be updating the man-
ager’s probability vector. Thus, at a given point in time,
workers are working with a slightly outdated probabil-
ity vector. Although this might seem a disadvantage at
first sight, the error that is committed by working with
a slightly outdated probability vector is likely to be neg-
ligible for the overall search because an iteration of the
cGA represents only a small step in the action of the GA
(this is especially true for large population sizes).

One could think of different ways of parallelizing the
cGA but the scheme that we are proposing is particularly
attractive because once the manager starts, there can be
an arbitrary number of workers, each of which can start
and finish at any given point in time making the whole
system fault tolerant. When a worker starts, it receives a
copy of the manager’s probability vector, which already
contains the accumulated results of the other cGA work-
ers. On the other hand, when a worker quits, we simply
loose a maximum ofm function evaluations, which is
not a big problem.

The proposed parallelization scheme has several ad-
vantages: (1) it has low synchronization costs, (2) it is
fault tolerant, and (3) it is scalable.

All the communication that takes place consists of
short transactions. Workers do their job independently
and only interrupt the manager once in a while. Dur-
ing the interruption period, the manager communicates



worker #3

m
od

el
 d

if
fe

re
nc

e

...

m
od

elmodel

model 
diff

ere
nce

model

model difference

m
od

el
 d

iff
er

en
ce

m
od

el

worker #2 worker #n

manager

worker #1

Fig. 1. Manager-worker architecture.

with a single worker, and the other workers can continue
working non-stop.

The architecture is fault tolerant because workers can
go up or down at any given point in time. This makes
it suitable for massive parallelization using the Internet.
It is scalable because potentially there is no limit on the
number of workers.

5 Computer simulations

This section presents computer simulations that were
done to validate the proposed approach. In order to sim-
plify both the implementation and the interpretation of
the results, we decided to do a serial implementation of
the parallel cGA architecture. The serial implementation
simulates that there are a number ofP worker processors
and 1 manager processor. TheP worker processors start
running at the same time and they all execute at the same
speed. In addition, it is assumed that the communication
cost associated with a manager-worker transaction takes
a constant time which is proportional to the probability
vector’s size. Such a scheme can be implemented by
having a collection ofP regular compact GAs, each one
with its own probability vector, and iterating through all
of them, doing a small step of the cGA main loop, one
at a time. After a particular cGA worker completesm
fitness function evaluations, the worker-manager com-
munication is simulated as described in section 4.

We present experiments on a bounded deceptive func-
tion consisting of the concatenation of 10 copies of a
3-bit trap function with deceptive-to-optimal ratio of0.7
[4]. This same function has been used in the original
cGA work. We simulate a selection rate ofs = 8 and
did tests with a population size ofN = 100000 indi-
viduals (each worker processor runs a cGA that simu-
lates a 100000 population size). We chose this popula-
tion size because we wanted to use a size large enough
to solve all the building blocks correctly. We uses = 8
following the recommendation given by Harik et al. in
the original cGA paper for this type of problem. Finally,
we chose this problem as a test function because, even

1 2 4 8 16 32 64 128 256 512 1024
10

3

10
4

10
5

10
6

10
7

number of processors

fu
nc

tio
n 

ev
al

ua
tio

ns
 p

er
 p

ro
ce

ss
or

m = 8
m = 80
m = 800
m = 8000
m = 80000

Fig. 2. Function evaluations per processor.

1 2 4 8 16 32 64 128 256 512 1024
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

number of processors

co
m

m
un

ic
at

io
n 

st
ep

s 
pe

r 
pr

oc
es

so
r

m = 8
m = 80
m = 800
m = 8000
m = 80000

Fig. 3. Communication steps per processor.

though the cGA is a poor algorithm in solving the prob-
lem, we wanted to use a function that requires a large
population size because those are the situations where
the benefits from parallelization are more pronounced.

Having fixed both the population size and the selec-
tion rate, we decided to systematically vary the num-
ber of worker processorsP , as well as them parameter
which has an effect on the rate of communication that
occurs between the manager and a worker. We did ex-
periments forP in {1, 2, 4, 8, 16, 32, 64, 128, 256, 512,
1024}, and for a particularP , we varied the parameterm
in {8, 80, 800, 8000, 80000}. This totalled 55 different
configurations, each of which was run 30 independent
times.

Them parameter is important because it is the one that
affects communication costs. Smallerm values imply an



increase in communication costs. On the other hand, for
very largem values, performance degrades because the
cGA workers start sampling individuals from outdated
probability vectors.

Figures 2 and 3 show the results. In terms of fitness
function evaluations per processor, we observe a linear
speedup for lowm values. For instance, form = 8 we
observe a straight line on the log-log plot. Using the
data directly, we calculated the slope of the line and ob-
tained an approximate value of -0.3. In order to take into
account the different logarithm bases, we need to mul-
tiply it by log2 10 (y-axis islog10, x-axis islog2) yield-
ing a slope of approximately -1. This means that the
number of function evaluations per processor decreases
linearly with a growing number of processors. That is,
whenever we double the number of processors, the aver-
age number of fitness function evaluations per processor
gets cut by a half. Likewise, in terms of communication
costs, as we raise the parameterm, the average number
of communication steps between manager and worker
decreases in the same proportion as expected. For in-
stance, form = 80, communication costs are reduced 10
times when compared withm = 8. Notice that there is a
degradation in terms of speedup for the largerm values.
For instance, form = 8000 andm = 80000 (which is
about the same order of the population size), the speedup
obtained goes away from the idealized case. This can
be explained by the fact that in this case (and especially
with a large number of processors), the average number
of communication steps per processor approaches zero.
That means that a large fraction of processors were ac-
tually doing some work but never communicated their
results back to the manager because the problem was
solved before they had a chance to do so.

6 Extensions

It would be interesting to do a mathematical analy-
sis of the proposed parallel cGA. A number of questions
come to mind. For instance, what is the effect of the
m parameter? What about the number of workersP?
Shouldm be adjusted automatically as a function ofP
andN? Our experiments suggest that there is an “op-
timal” m that depends on the number of cGA workers
P , and most likely depends on the population sizeN as
well.

Another extension that could be done is to compare
the proposed parallel architecture with those used more
often in traditional parallel GAs, either master-slave and
multiple deme GAs. Again, our experiments suggest that
the parallel cGA is likely to be on top of regular parallel
GAs due to lower communication costs.

The model structure of the cGA never changes, every
gene is always treated independently. There are other

probabilistic model building genetic algorithms (PMB-
GAs) [5] which are able to learn a more complex struc-
ture dynamically as the search progresses. One could
think of using some of the ideas presented here for par-
allelizing these more complex PMBGAs.

Finally, it would be interesting to have a parallel
cGA implementation based on the Internet infrastruc-
ture, where computers around the world could contribute
with some processing power when they are idle. Similar
schemes have been done with other projects, one of the
most well known is the SETI@home project [6].

7 Summary and conclusions
This paper reviewed the compact GA and presented an

architecture that allows its massive parallelization. The
motivation for doing so has been discussed and a serial
implementation of the parallel architecture was simu-
lated. Computer experiments were done under idealized
conditions and we have verified an almost linear speedup
with a growing number of processors.

The paper presented a novel way of parallelizing GAs.
This was possible due to the different operational mech-
anisms of the cGA when compared with a more tradi-
tional GA. By taking advantage of the compact repre-
sentation of the population, it becomes possible do dis-
tribute its representation to different computers without
the associated cost of sending it individual by individual.

Acknowledgements
This work was sponsored by FCT/MCES under grant

POSI/SRI/42065/2001.

References
[1] Cant́u-Paz, E. (2000) Efficient and accurate parallel

genetic algorithms. Kluwer Academic Publishers,
Boston, MA.

[2] Harik, G.R., Lobo, F.G., Goldberg, D.E. (1999) The
compact genetic algorithm. IEEE Transactions on
Evolutionary Computation3, pp. 287–297

[3] Harik, G.R. (1997) Personal communication.

[4] Deb, K., Goldberg, D.E. (1993) Analyzing decep-
tion in trap functions. In Whitley, L.D., ed.: Foun-
dations of Genetic Algorithms 2, San Mateo, CA,
Morgan Kaufmann, pp. 93–108

[5] Pelikan, M., Goldberg, D.E., Lobo, F. (2002) A
survey of optimization by building and using prob-
abilistic models. Computational Optimization and
Applications21, pp. 5–20

[6] Korpela, E., Werthimer, D., Anderson, D., Cobb, J.,
Lebofsky, M. (2001) SETI@home - massively dis-
tributed computing for SETI. Computing in Science
and Engineering3 pp. 79


